Theory and Numerical Analysis of Extreme Learning Machine and Its Application for Different Degrees of Defect Recognition of Hoisting Wire Rope

Author:

Zhao Zhike1ORCID,Zhang Xiaoguang1ORCID

Affiliation:

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

Abstract

An improved classification approach is proposed to solve the hot research problem of some complex multiclassification samples based on extreme learning machine (ELM). ELM was proposed based on the single-hidden layer feed-forward neural network (SLFNN). ELM is characterized by the easier parameter selection rules, the faster converge speed, the less human intervention, and so on. In order to further improve the classification precision of ELM, an improved generation method of the network structure of ELM is developed by dynamically adjusting the number of hidden nodes. The number change of the hidden nodes can serve as the computational updated step length of the ELM algorithm. In this paper, the improved algorithm can be called the variable step incremental extreme learning machine (VSI-ELM). In order to verify the effect of the hidden layer nodes on the performance of ELM, an open-source machine learning database (University of California, Irvine (UCI)) is provided by the performance test data sets. The regression and classification experiments are used to study the performance of the VSI-ELM model, respectively. The experimental results show that the VSI-ELM algorithm is valid. The classification of different degrees of broken wires is now still a problem in the nondestructive testing of hoisting wire rope. The magnetic flux leakage (MFL) method of wire rope is an efficient nondestructive method which plays an important role in safety evaluation. Identifying the proposed VSI-ELM model is effective and reliable for actually applying data, and it is used to identify the classification problem of different types of samples from MFL signals. The final experimental results show that the VSI-ELM algorithm is of faster classification speed and higher classification accuracy of different broken wires.

Funder

Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3