Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron‬

Author:

Lai ZhiFei1ORCID,Deng HuiFang1

Affiliation:

1. Department of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

Medical image classification is a key technique of Computer-Aided Diagnosis (CAD) systems. Traditional methods rely mainly on the shape, color, and/or texture features as well as their combinations, most of which are problem-specific and have shown to be complementary in medical images, which leads to a system that lacks the ability to make representations of high-level problem domain concepts and that has poor model generalization ability. Recent deep learning methods provide an effective way to construct an end-to-end model that can compute final classification labels with the raw pixels of medical images. However, due to the high resolution of the medical images and the small dataset size, deep learning models suffer from high computational costs and limitations in the model layers and channels. To solve these problems, in this paper, we propose a deep learning model that integrates Coding Network with Multilayer Perceptron (CNMP), which combines high-level features that are extracted from a deep convolutional neural network and some selected traditional features. The construction of the proposed model includes the following steps. First, we train a deep convolutional neural network as a coding network in a supervised manner, and the result is that it can code the raw pixels of medical images into feature vectors that represent high-level concepts for classification. Second, we extract a set of selected traditional features based on background knowledge of medical images. Finally, we design an efficient model that is based on neural networks to fuse the different feature groups obtained in the first and second step. We evaluate the proposed approach on two benchmark medical image datasets: HIS2828 and ISIC2017. We achieve an overall classification accuracy of 90.1% and 90.2%, respectively, which are higher than the current successful methods.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3