Affiliation:
1. Department of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
Abstract
Medical image classification is a key technique of Computer-Aided Diagnosis (CAD) systems. Traditional methods rely mainly on the shape, color, and/or texture features as well as their combinations, most of which are problem-specific and have shown to be complementary in medical images, which leads to a system that lacks the ability to make representations of high-level problem domain concepts and that has poor model generalization ability. Recent deep learning methods provide an effective way to construct an end-to-end model that can compute final classification labels with the raw pixels of medical images. However, due to the high resolution of the medical images and the small dataset size, deep learning models suffer from high computational costs and limitations in the model layers and channels. To solve these problems, in this paper, we propose a deep learning model that integrates Coding Network with Multilayer Perceptron (CNMP), which combines high-level features that are extracted from a deep convolutional neural network and some selected traditional features. The construction of the proposed model includes the following steps. First, we train a deep convolutional neural network as a coding network in a supervised manner, and the result is that it can code the raw pixels of medical images into feature vectors that represent high-level concepts for classification. Second, we extract a set of selected traditional features based on background knowledge of medical images. Finally, we design an efficient model that is based on neural networks to fuse the different feature groups obtained in the first and second step. We evaluate the proposed approach on two benchmark medical image datasets: HIS2828 and ISIC2017. We achieve an overall classification accuracy of 90.1% and 90.2%, respectively, which are higher than the current successful methods.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献