Constructions of the Soluble Potentials for the Nonrelativistic Quantum System by Means of the Heun Functions

Author:

Dong Shishan1ORCID,Yáñez-Navarro G.2,Mercado Sanchez M. A.3ORCID,Mejía-García C.2ORCID,Sun Guo-Hua4,Dong Shi-Hai3ORCID

Affiliation:

1. Information and Engineering College, Dalian University, Dalian 116622, China

2. Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, UPALM, CDMX 07738, Mexico

3. Laboratorio de Información Cuántica, CIDETEC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico

4. Catedrática CONACyT, CIC, Instituto Politécnico Nacional, UPALM, CDMX 07700, Mexico

Abstract

The Schrödinger equation ψ(x)+κ2ψ(x)=0 where κ2=k2-V(x) is rewritten as a more popular form of a second order differential equation by taking a similarity transformation ψ(z)=ϕ(z)u(z) with z=z(x). The Schrödinger invariant IS(x) can be calculated directly by the Schwarzian derivative z,x and the invariant I(z) of the differential equation uzz+f(z)uz+g(z)u=0. We find an important relation for a moving particle as 2=-IS(x) and thus explain the reason why the Schrödinger invariant IS(x) keeps constant. As an illustration, we take the typical Heun’s differential equation as an object to construct a class of soluble potentials and generalize the previous results by taking different transformation ρ=z(x) as before. We get a more general solution z(x) through integrating (z)2=α1z2+β1z+γ1 directly and it includes all possibilities for those parameters. Some particular cases are discussed in detail. The results are also compared with those obtained by Bose, Lemieux, Batic, Ishkhanyan, and their coworkers. It should be recognized that a subtle and different choice of the transformation z(x) also related to ρ will lead to difficult connections to the results obtained from other different approaches.

Funder

Instituto Politécnico Nacional

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3