Assessment of Lumbar Lordosis Distribution with a Novel Mathematical Approach and Its Adaptation for Lumbar Intervertebral Disc Degeneration

Author:

Sandor Zoltan1ORCID,Rathonyi Gabor Kristof2,Dinya Elek1

Affiliation:

1. Institute of Digital Health Sciences, Semmelweis University, Budapest, Hungary

2. Department of Orthopaedics, Health Services of Budavari Local Government, Budapest, Hungary

Abstract

Introduction. Low back pain and disc degeneration could be linked to global spinal geometry. Our study aimed to develop a reliable new mathematical method to assess the local distribution of total lumbar lordosis with a single numeric parameter and compare it with lumbar intervertebral disc degeneration using routine MRI scans. Methods. An online, open access, easy-to-use platform for measurements was developed based on a novel mathematical approach using MRIs of 60 patients. Our Spinalyze Software can be used online with uploaded MRIs. Several new parameters were introduced and assessed to describe variation in segmental lordosis distribution with a single numerical value. The Pfirrmann grading system was used for the classification of lumbar intervertebral disc degeneration. Relationships were investigated between the grade categories of L1-S1 lumbar discs and the MRI morphological parameters with correlation analysis. Results. Results confirm that the determination of measurement points and calculated parameters are reliable (ICCs and Pearson r values > 0.90), and these parameters were independent of gender. The digression percentage (K%), one of our new parameters, did not show a statistical relationship with the Cobb-angle. According to our results, the maximum deflection breaking-point of lumbar lordosis and its location can be different with the same Cobb-angle and the distribution of global lordosis is uneven because the shape of the lumbar lordosis is shifted downward and centered around the L4 lumbar vertebra. The interobserver reliability of the Pfirrmann grades reading was in the excellent agreement category (88.33% agreement percentage, 0.84 kappa), and digression percentage (K%) showed a significant negative correlation with all L1-S1 disc grades with increasing r correlation values. This means that the smaller the value of digression percentage (K%), the more the number of worn discs in the lower lumbar sections. Conclusions. Spinalyze Software based on a novel mathematical approach provides a free, easy-to-use, reliable, and online measurement tool using standard MRIs to approximate the curvature of lumbar lordosis. The new reliable K% (digression percentage) is one single quantitative parameter to assess the local distribution of total lumbar lordosis. The results indicate that digression percentage (K%) may possibly be associated with the development of lumbar intervertebral disc degeneration. Further evaluation is needed to assess its behavior and advantage.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3