Optimal Physics Parameterization Scheme Combination of the Weather Research and Forecasting Model for Seasonal Precipitation Simulation over Ghana

Author:

Agyeman Richard Yao Kuma1ORCID,Annor Thompson2ORCID,Lamptey Benjamin3,Quansah Emmanuel2,Agyekum Jacob2ORCID,Tieku Sampson Adu4

Affiliation:

1. Numerical Weather Prediction Unit, Ghana Meteorological Agency (GMet), Accra, Ghana

2. Department of Physics, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

3. African Centre of Meteorological Applications for Development (ACMAD), Niamey, Niger

4. Ghana Meteorological Agency (GMet), Kumasi Airport Office, Kumasi, Ghana

Abstract

Seasonal predictions of precipitation, among others, are important to help mitigate the effects of drought and floods on agriculture, hydropower generation, disasters, and many more. This work seeks to obtain a suitable combination of physics schemes of the Weather Research and Forecasting (WRF) model for seasonal precipitation simulation over Ghana. Using the ERA-Interim reanalysis as forcing data, simulation experiments spanning eight months (from April to November) were performed for two different years: a dry year (2001) and a wet year (2008). A double nested approach was used with the outer domain at 50 km resolution covering West Africa and the inner domain covering Ghana at 10 km resolution. The results suggest that the WRF model generally overestimated the observed precipitation by a mean value between 3% and 64% for both years. Most of the scheme combinations overestimated (underestimated) precipitation over coastal (northern) zones of Ghana for both years but estimated precipitation reasonably well over forest and transitional zones. On the whole, the combination of WRF Single-Moment 6-Class Microphysics Scheme, Grell-Devenyi Ensemble Cumulus Scheme, and Asymmetric Convective Model Planetary Boundary Layer Scheme simulated the best temporal pattern and temporal variability with the least relative bias for both years and therefore is recommended for Ghana.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3