Identification of Key CircRNAs Related to Pulmonary Tuberculosis Based on Bioinformatics Analysis

Author:

Yuan Qin1,Wen Zilu2,Yang Ke1,Zhang Shulin34,Zhang Ning5ORCID,Song Yanzheng6ORCID,Chen Fuxue1ORCID

Affiliation:

1. School of Life Sciences, Shanghai University, Shanghai, China

2. Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China

3. Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

4. Tuberculosis Research Center, Shanghai Public Health Clinical Center, Shanghai, China

5. Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China

6. Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China

Abstract

Pulmonary tuberculosis (TB) is a chronic infectious disease that is caused by respiratory infections, principally Mycobacterium tuberculosis. Increasingly, studies have shown that circular (circ)RNAs play regulatory roles in different diseases through different mechanisms. However, their roles and potential regulatory mechanisms in pulmonary TB remain unclear. In this study, we analyzed circRNA sequencing data from adjacent normal and diseased tissues from pulmonary TB patients and analyzed the differentially expressed genes. We then constructed machine learning models and used single-factor analysis to identify hub circRNAs. We downloaded the pulmonary TB micro (mi)RNA (GSE29190) and mRNA (GSE83456) gene expression datasets from the Gene Expression Omnibus database and performed differential expression analysis to determine the differentially expressed miRNAs and mRNAs. We also constructed a circRNA–miRNA–mRNA interaction network using Cytoscape. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict the biological functions of the identified RNAs and determine hub genes. Then, the STRING database and cytoHubba were used to construct protein-protein interaction networks. The results showed 125 differentially expressed circRNAs in the adjacent normal and diseased tissues of pulmonary TB patients. Among them, we identified three hub genes associated with the development of pulmonary TB: hsa_circ_0007919 (upregulated), hsa_circ_0002419 (downregulated), and hsa_circ_0005521 (downregulated). Through further screening, we determined 16 mRNAs of potential downstream genes for hsa-miR-409-5p and hsa_circ_0005521 and established an interaction network. This network may have important roles in the occurrence and development of pulmonary TB. We constructed a model with 100% prediction accuracy by machine learning and single-factor analysis. We constructed a protein-protein interaction network among the top 50 hub mRNAs, with FBXW7 scoring the highest and SOCS3 the second highest. These results may provide a new reference for the identification of candidate markers for the early diagnosis and treatment of pulmonary TB.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3