The Quadruped Robot Uses the Trajectory Planned by DIACO to Complete the Obstacle Avoidance Task

Author:

He Jingye1ORCID,Shao Junpeng1ORCID,Sun Guitao1

Affiliation:

1. Harbin University of Science and Technology, Harbin 150080, China

Abstract

The diffusion-improved ant colony optimization (DIACO) algorithm, as introduced in this paper, addresses the slow convergence speed and poor stability of the ant colony optimization (ACO) in obstacle avoidance path planning for quadruped robots. DIACO employs a nonuniformly distributed initial pheromone, which reduces the blind search time in the early stage. The algorithm updates the heuristic information in the transition probability, which allows ants to better utilize the information from the previous iteration during their path search. Simultaneously, DIACO adjusts the pheromone concentration left by ants on the path based on the map information and diffuses the pheromone within a specific range following the artificial potential field algorithm. In the global pheromone update, DIACO adjusts the pheromone on both the optimal path and the worst path generated by the current iteration, thereby enhancing the probability of ants finding the optimal path in the subsequent iteration. This paper designs a steering gait based on the tort gait to fulfill the obstacle avoidance task of a quadruped robot. The effectiveness of the DIACO algorithm and steering gait is validated through a simulation environment with obstacles constructed in Adams. The simulation results reveal that DIACO demonstrates improved convergence speed and stability compared to ACO, and the quadruped robot effectively completes the obstacle avoidance task using the path planning provided by DIACO in combination with the steering gait.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3