Forest Canopy Height Estimation Using Multiplatform Remote Sensing Dataset

Author:

Lee Won-Jin1ORCID,Lee Chang-Wook2ORCID

Affiliation:

1. Earthquake and Volcano Research Division, Korea Meteorological Administration, 61 16-Gil, Yeouidaebang-ro, Dongjak-gu, Seoul 07062, Republic of Korea

2. Division of Science Education, 1 Kangwondaehak-gil, Chuncheon, 24341 Gangwon, Republic of Korea

Abstract

Recently, numerous studies have attempted to determine forest height using remote sensing techniques that not only have the benefits of fast data acquisition, processing, and analysis but are also cost-effective. However, if there was insufficient data to apply the latest remote sensing techniques, we need to consider many kinds of datasets as possible. In this study, we tried to determine forest height using discrete-return LiDAR data, SRTM, satellite L-band SAR data, and Optical data. We experimented with the differences between LiDAR DSM and DTM, as well as SRTM DSM and LiDAR DTM. In addition, we applied an SBAS algorithm and linear regression to the dataset. From the quantitative evaluation, the RMSE and R2 of the LiDAR-derived forest height (3.22 m and 0.43, resp.) and the SRTM-derived forest height (2.90 m and 0.50, resp.) were both reasonably good, especially when we consider data acquisition time differences and measurement errors in mountainous areas. Moreover, we slightly improved the RMSE and R2 from 2.90 m and 0.50, respectively, to 2.75 m and 0.54, respectively, by correcting the SRTM using the SBAS algorithm. Furthermore, we merged the datasets using linear regression and obtained improved forest heights with RMSE and R2 values of 2.68 m and 0.56, respectively. To generate a forest height map, we used NDVI from Optical imagery and masked heights below 2 m from each sensor. Thus, we excluded urban areas, “bare earth surfaces,” and mountain streams from each sensor’s imagery. Finally, we generated a forest height map by overlapping the datasets. The results of this study indicate that each sensor has the potential for not only determining forest height but also extracting complementary forest area information. Furthermore, this study demonstrates the potential for improvement using the SBAS algorithm and linear regression.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3