Effects of Dietary Carbohydrate Levels on Growth Performance, Body Composition, Antioxidant Capacity, Immunity, and Liver Morphology in Oncorhynchus mykiss under Cage Culture with Flowing Freshwater

Author:

Zhao Wei1ORCID,Wei Han-Lin1,Wang Zi-Qiao1,He Xuan-Shu1,Niu Jin1ORCID

Affiliation:

1. State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China

Abstract

The purpose of this study is to investigate the effects of dietary carbohydrate levels on growth performance, body composition, antioxidant capacity, immunity, and liver morphology in Oncorhynchus mykiss under cage culture with flowing freshwater. Fish (initial body weight 25.70 ± 0.24 g) were fed five isonitrogenous (420 g/kg protein) and isolipidic (150 g/kg lipid) diets containing 50.6, 102.1, 151.3, 200.9 and 251.8 g/kg carbohydrate levels, respectively. The results indicated that fish fed diets containing 50.6-200.9 g/kg carbohydrate showed significantly higher growth performance, feed utilization, and feed intake than those fed 251.8 g/kg dietary carbohydrate levels. Based on the analysis of the quadratic regression equation for weight gain rate, the appropriate dietary carbohydrate requirement of O. mykiss was estimated to be 126.2 g/kg. 251.8 g/kg carbohydrate level activated Nrf2-ARE signaling pathway, suppressed superoxide dismutase activity and total antioxidant capacity, and increased MDA content in the liver. Besides, fish fed a diet containing 251.8 g/kg carbohydrate showed a certain degree of hepatic sinus congestion and dilatation in the liver. Dietary 251.8 g/kg carbohydrate upregulated the mRNA transcription level of proinflammatory cytokines and downregulated the mRNA transcription level of lysozyme and complement 3. Whole-body compositions were not affected by dietary carbohydrate levels. In conclusion, 251.8 g/kg carbohydrate level suppressed the growth performance, antioxidant capacity and innate immunity, resulting in liver injury and inflammatory response of O. mykiss. A diet containing more than 200.9 g/kg carbohydrate is not efficiently utilized by O. mykiss under cage culture with flowing freshwater.

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3