Affiliation:
1. Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON, Canada K1N 6N5
Abstract
This paper is dedicated to the study of a nonlinear SPDE on a bounded domain in Rd, with zero initial conditions and Dirichlet boundary, driven by an α-stable Lévy noise Z with α∈(0,2), α≠1, and possibly nonsymmetric tails. To give a meaning to the concept of solution, we develop a theory of stochastic integration with respect to this noise. The idea is to first solve the equation with “truncated” noise (obtained by removing from Z the jumps which exceed a fixed value K), yielding a solution uK, and then show that the solutions uL,L>K coincide on the event t≤τK, for some stopping times τK converging to infinity. A similar idea was used in the setting of Hilbert-space valued processes. A major step is to show that the stochastic integral with respect to ZK satisfies a pth moment inequality. This inequality plays the same role as the Burkholder-Davis-Gundy inequality in the theory of integration with respect to continuous martingales.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Applied Mathematics,Modeling and Simulation,Statistics and Probability,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献