Affiliation:
1. College of Information System and Management, National University of Defense Technology, Changsha, Hunan 410073, China
2. College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
Abstract
Middle East Respiratory Syndrome (MERS), bursting in South Korea from May 2015 and mainly spreading within the hospitals at the beginning, has caused a large scale of public panic. Aiming at this kind of epidemic spreading swiftly by intimate contact within community structure, we first established a spreading model based on contact strength and SI model, and a weighted network with community structure based on BBV network model. Meanwhile, the sufficient conditions were deduced to ensure the optimal community division. Next, after the verification by the real data of MERS, it is found that the spreading rate is closely related to the average weight of network but not the number of communities. Then, as the further study shows, the final infection proportion declines with the decreases both in isolation delay and in average weight; however, this proportion can only be postponed rather than decreased with respect to sole average weight reduction without isolation. Finally, the opportunities to take action can be found to restrain the epidemic spreading to the most extent.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献