Homogeneity Test of Many-to-One Risk Differences for Correlated Binary Data under Optimal Algorithms

Author:

Mou Keyi1ORCID,Li Zhiming1ORCID

Affiliation:

1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 834800, China

Abstract

In clinical studies, it is important to investigate the effectiveness of different therapeutic designs, especially, multiple treatment groups to one control group. The paper mainly studies homogeneity test of many-to-one risk differences from correlated binary data under optimal algorithms. Under Donner’s model, several algorithms are compared in order to obtain global and constrained MLEs in terms of accuracy and efficiency. Further, likelihood ratio, score, and Wald-type statistics are proposed to test whether many-to-one risk differences are equal based on optimal algorithms. Monte Carlo simulations show the performance of these algorithms through the total averaged estimation error, SD, MSE, and convergence rate. Score statistic is more robust and has satisfactory power. Two real examples are given to illustrate our proposed methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3