Numerical Simulation for Fracture Propagation in Elastoplastic Formations

Author:

Hu Yafei1ORCID,Zhao Jin2ORCID,Cao Lihu3,Zhao Jinzhou4,Li Junshi5,Wu Zhiying6,Hou Jianfeng1

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. School of Mechanical Engineering, Yangtze University, Jingzhou, 434023, China

3. Oil & Gas Engineering Research Institute of PetroChina Tarim Oilfield Company, Korla, Xinjiang S41000, China

4. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

5. Petrochina Consulting Center, Beijing 100120, China

6. Reservoir Reconstruction Department of SRIPE, Beijing 100101, China

Abstract

Current hydraulic fracture models are mainly based on elastic theories, which fail to give accurate prediction of fracture parameters in plasticity formation. This paper proposes a fluid–solid coupling model for fracture propagation in elastoplastic formations. The rock plastic deformation in the model satisfies the Mohr-Coulomb yield criterion and plastic strain increment theory. The extended finite-element method (XFEM) combined with the cohesive zone method (CZM) is used to solve the coupled model. The accuracy of the model is validated against existing models. The effects of stress difference, friction angle, and dilation angle on fracture shape (length, width), injection pressure, plastic deformation, induced stress, and pore pressure are investigated through the model. The results indicate that compared with elastic formation, fracture propagation in elastoplastic formation is more difficult, the breakdown pressure and extending pressure are greater, and fracture shape is wider and shorter. The plastic deformation causes the fracture tip to become blunt. Under the condition of high stress difference or low friction angle formation, it is prone to occur large plastic deformation zones and form wide and short fracture. Compared with friction angle, dilation angle is less sensitive to plastic deformation, fracture parameters, and fracture geometry. For the formation with high stress difference and friction angle, the effect of plasticity deformation on fracture propagation should not be ignored.

Funder

National Major Science and Technology Projects of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3