Affiliation:
1. Department of Electronic Engineering, I-Shou University, Kaohsiung 84001, Taiwan
2. Institute of Photonics and Communications, National Kaohsiung University of Applied Sciences, Kaohsiung 80778, Taiwan
Abstract
High efficiency video coding (HEVC) is the latest video coding standard. HEVC can achieve higher compression performance than previous standards, such as MPEG-4, H.263, and H.264/AVC. However, HEVC requires enormous computational complexity in encoding process due to quadtree structure. In order to reduce the computational burden of HEVC encoder, an early transform unit (TU) decision algorithm (ETDA) is adopted to pruning the residual quadtree (RQT) at early stage based on the number of nonzero DCT coefficients (called NNZ-EDTA) to accelerate the encoding process. However, the NNZ-ETDA cannot effectively reduce the computational load for sequences with active motion or rich texture. Therefore, in order to further improve the performance of NNZ-ETDA, we propose an adaptive RQT-depth decision for NNZ-ETDA (called ARD-NNZ-ETDA) by exploiting the characteristics of high temporal-spatial correlation that exist in nature video sequences. Simulation results show that the proposed method can achieve time improving ratio (TIR) about 61.26%~81.48% when compared to the HEVC test model 8.1 (HM 8.1) with insignificant loss of image quality. Compared with the NNZ-ETDA, the proposed method can further achieve an average TIR about 8.29%~17.92%.
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献