An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG

Author:

Chen Hao1ORCID,Ji Taoyun2ORCID,Zhan Xiang13ORCID,Liu Xiaoxin3ORCID,Yu Guojing2ORCID,Wang Wen2ORCID,Jiang Yuwu2ORCID,Zhou Xiao-Hua134ORCID

Affiliation:

1. Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

2. Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi’an Men Street, West District, Beijing 100034, China

3. Department of Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China

4. Pazhou Lab, Guangzhou 510330, Guangdong, China

Abstract

Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. Methods. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress of epileptic seizure prediction methods based on EEG;Cognitive Neurodynamics;2024-05-07

2. Forecasting Epileptic Seizures Using XGBoost Methodology and EEG Signals;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3