Estimation Algorithm of Machine Operational Intention by Bayes Filtering with Self-Organizing Map

Author:

Suzuki Satoshi1,Harashima Fumio2

Affiliation:

1. School of Science and Technology for Future Life, Department of Robotics and Mechatronics, Tokyo Denki University, 2-2 Kanda-Nishiki-cho, Chiyoda-ku, Tokyo 101-8457, Japan

2. Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo 192-0397, Japan

Abstract

We present an intention estimator algorithm that can deal with dynamic change of the environment in a man-machine system and will be able to be utilized for an autarkical human-assisting system. In the algorithm, state transition relation of intentions is formed using a self-organizing map (SOM) from the measured data of the operation and environmental variables with the reference intention sequence. The operational intention modes are identified by stochastic computation using a Bayesian particle filter with the trainedSOM. This method enables to omit the troublesome process to specify types of information which should be used to build the estimator. Applying the proposed method to the remote operation task, the estimator's behavior was analyzed, the pros and cons of the method were investigated, and ways for the improvement were discussed. As a result, it was confirmed that the estimator can identify the intention modes at 44–94 percent concordance ratios against normal intention modes whose periods can be found by about 70 percent of members of human analysts. On the other hand, it was found that human analysts' discrimination which was used as canonical data for validation differed depending on difference of intention modes. Specifically, an investigation of intentions pattern discriminated by eight analysts showed that the estimator could not identify the same modes that human analysts could not discriminate. And, in the analysis of the multiple different intentions, it was found that the estimator could identify the same type of intention modes to human-discriminated ones as well as 62–73 percent when the first and second dominant intention modes were considered.

Funder

Japanese Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Hindawi Limited

Subject

Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3