A Review on the Impact of Bio-Additives on Tribological Behavior of Diesel Fuels

Author:

Zewdie Hailegebrel1ORCID,Tibba Getachew Shunki1,Zeleke Dinku Seyoum1ORCID,Perumal Varatharaju2ORCID,Remedios Castañeiras Pedro Dionisio2

Affiliation:

1. College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

2. Department of Automotive Technology, Technical and Vocational Training Institute, Addis Ababa, Ethiopia

Abstract

Automobile engines require lubrication to lessen the impact of friction due to the high levels of wear and frictional heat generated by the sliding parts. Wear and friction will cause engine parts to endure for less time, be less reliable, and require more maintenance. Diesel fuel can potentially be replaced with biodiesel among other fuels. Diesel engines have a serious problem with equipment that is lubricated by the fuel itself. This study’s goal is to assess the influence of bio-additives on the diesel fuel tribological behavior and energy balance during the car’s idle running, acceleration, constant speed, and braking. Lubricity issues with reformulated diesel and lubricity test procedures are explained. The relationship between tribology and bio-additives is also briefly illustrated. According to the literature, adding bio-additives to fuel boosts its lubricity. Biodiesel has long been considered an additive with excellent lubricant properties. Even in small amounts, adding biodiesel to diesel fuel can increase its lubricity without the need for conventional lubricity additives. This is especially true for diesel fuel with ultralow sulfur. Diesel fuel characteristics determine the precise blending percentage needed to provide the proper lubricity of maximum 520 μm testing wear scars with a high-frequency reciprocating rig (HFRR), although 2% biodiesel nearly invariably imparts adequate lubricity to biodiesel blends. Tall oil fatty acid (TOFA) was one of the bio-additives investigated by HFRR. When the additive concentration was raised from 0 to 500 g/g, the wear scar diameter (WSD) of nonadditive diesel fuel was lowered by 60.3%, from 630 to 250 μm, and the coefficient of friction (COF) was lowered by 95.7%, from 0.47 to 0.02.

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3