Natural Antioxidant-Isoliquiritigenin Ameliorates Contractile Dysfunction of Hypoxic Cardiomyocytes via AMPK Signaling Pathway

Author:

Zhang Xiaoyu12ORCID,Zhu Ping3,Zhang Xiuying4ORCID,Ma Yina2,Li Wenguang1,Chen Ji-Mei3,Guo Hui-Ming3,Bucala Richard5,Zhuang Jian3,Li Ji2

Affiliation:

1. Institute of Physiology, School of Basic Medicine Sciences, Lanzhou University, Lanzhou 730000, China

2. Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY University of New York, Buffalo, NY 14214, USA

3. Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China

4. Department of Emergency, Gansu Provincial Hospital, Lanzhou 730000, China

5. Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA

Abstract

Isoliquiritigenin (ISL), a simple chalcone-type flavonoid, is derived from licorice compounds and is mainly present in foods, beverages, and tobacco. Reactive oxygen species (ROS) is a critical factor involved in modulating cardiac stress response signaling during ischemia and reperfusion. We hypothesize that ISL as a natural antioxidant may protect heart against ischemic injury via modulating cellular redox status and regulating cardioprotective signaling pathways. The fluorescent probe H2DCFDA was used to measure the level of intracellular ROS. The glucose uptake was determined by 2-deoxy-D-glucose-3H accumulation. The IonOptix System measured the contractile function of isolated cardiomyocytes. The results demonstrated that ISL treatment markedly ameliorated cardiomyocytes contractile dysfunction caused by hypoxia. ISL significantly stimulated cardioprotective signaling, AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK) signaling pathways. The ROS fluorescent probe H2DCFDA determination indicated that ISL significantly reduced cardiac ROS level during hypoxia/reoxygenation. Moreover, ISL reduced the mitochondrial potential (Δψ) of isolated mouse cardiomyocytes. Taken together, ISL as a natural antioxidant demonstrated the cardioprotection against ischemic injury that may attribute to the activation of AMPK and ERK signaling pathways and balance of cellular redox status.

Funder

Natural Science Foundation of Gansu Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3