Affiliation:
1. Department of Orthopedics of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China
2. Research Centre of the Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China
3. The Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Diseases of Jilin Province, Ziqiang Street 218, Changchun, Jilin 130041, China
Abstract
Osteoarthritis (OA) is one of the most common diseases worldwide, but the pathogenic genes and pathways are largely unclear. The aim of this study was to screen and verify hub genes involved in OA and explore potential molecular mechanisms. The expression profiles of GSE12021 and GSE55235 were downloaded from the Gene Expression Omnibus (GEO) database, which contained 39 samples, including 20 osteoarthritis synovial membranes and 19 matched normal synovial membranes. The raw data were integrated to obtain differentially expressed genes (DEGs) and were deeply analyzed by bioinformatics methods. The Gene Ontology (GO) and pathway enrichment of DEGs were performed by DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) online analyses, respectively. The protein-protein interaction (PPI) networks of the DEGs were constructed based on data from the STRING database. The top 10 hub genes VEGFA, IL6, JUN, IL1β, MYC, IL4, PTGS2, ATF3, EGR1, and DUSP1 were identified from the PPI network. Module analysis revealed that OA was associated with significant pathways including TNF signaling pathway, cytokine-cytokine receptor interaction, and osteoclast differentiation. The qRT-PCR result showed that the expression level of IL6, VEGFA, JUN, IL-1β, and ATF3 was significantly increased in OA samples (p < 0.05), and these candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of OA.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献