Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC

Author:

Zhao Jie1,Lei Xiujuan1ORCID,Wu Fang-Xiang23ORCID

Affiliation:

1. School of Computer Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China

2. School of Mathematical Sciences, Nankai University, Tianjin 300071, China

3. Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9

Abstract

Protein complexes play a critical role in understanding the biological processes and the functions of cellular mechanisms. Most existing protein complex detection algorithms cannot reflect dynamics of protein complexes. In this paper, a novel algorithm named Improved Cuckoo Search Clustering (ICSC) algorithm is proposed to detect protein complexes in weighted dynamic protein-protein interaction (PPI) networks. First, we constructed weighted dynamic PPI networks and detected protein complex cores in each dynamic subnetwork. Then, ICSC algorithm was used to cluster the protein attachments to the cores. The experimental results on both DIP dataset and Krogan dataset demonstrated that ICSC algorithm is more effective in identifying protein complexes than other competing methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3