Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells

Author:

Yuan Yu-Guo123ORCID,Zhang Shimin3ORCID,Hwang Ji-Yoon3ORCID,Kong Il-Keun3ORCID

Affiliation:

1. College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China

2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu 225009, China

3. Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Republic of Korea

Abstract

Silver nanoparticles (AgNPs) are widely used metal nanoparticles in health care industries, particularly due to its unique physical, chemical, optical, and biological properties. It is used as an antibacterial, antiviral, antifungal, and anticancer agent. Camptothecin (CPT) and its derivatives function as inhibitors of topoisomerase and as potent anticancer agents against a variety of cancers. Nevertheless, the combined actions of CPT and AgNPs in apoptosis in human cervical cancer cells (HeLa) have not been elucidated. Hence, we investigated the synergistic combinatorial effect of CPT and AgNPs in human cervical cancer cells. We synthesized AgNPs using sinigrin as a reducing and stabilizing agent. The synthesized AgNPs were characterized using various analytical techniques. The anticancer effects of a combined treatment with CPT and AgNPs were evaluated using a series of cellular and biochemical assays. The expression of pro- and antiapoptotic genes was measured using real-time reverse transcription polymerase chain reaction. The findings from this study revealed that the combination of CPT and AgNPs treatment significantly inhibited cell viability and proliferation of HeLa cells. Moreover, the combination effect significantly increases the levels of oxidative stress markers and decreases antioxidative stress markers compared to single treatment. Further, the combined treatment upregulate various proapoptotic gene expression and downregulate antiapoptotic gene expression. Interestingly, the combined treatment modulates various cellular signaling molecules involved in cell survival, cytotoxicity, and apoptosis. Overall, these results suggest that CPT and AgNPs cause cell death by inducing the mitochondrial membrane permeability change and activation of caspase 9, 6, and 3. The synergistic cytotoxicity and apoptosis effect seems to be associated with increased ROS formation and depletion of antioxidant. Certainly, a combination of CPT and AgNPs could provide a beneficial effect in the treatment of cervical cancer compared with monotherapy.

Funder

Ministry of Agriculture, Food and Rural Affairs

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3