Gesture Recognition Algorithm of Human Motion Target Based on Deep Neural Network

Author:

Xia Zhonghua12,Xing Jinming3,Wang Changzai4,Li Xiaofeng5ORCID

Affiliation:

1. College of Physical Education and Training, Harbin Sport University, Harbin 150025, China

2. Suan Sunan Rajabhat University, Bangkok 10300, Thailand

3. School of Physical Education, Northeast Normal University, Changchun 130024, China

4. Sun Yat-Sen Memorial Secondary School, Zhongshan 528454, Guangdong, China

5. Department of Information Engineering, Heilongjiang International University, Harbin 150025, China

Abstract

There are some problems in the current human motion target gesture recognition algorithms, such as classification accuracy, overlap ratio, low recognition accuracy and recall, and long recognition time. A gesture recognition algorithm of human motion based on deep neural network was proposed. First, Kinect interface equipment was used to collect the coordinate information of human skeleton joints, extract the characteristics of motion gesture nodes, and construct the whole structure of key node network by using deep neural network. Second, the local recognition region was introduced to generate high-dimensional feature map, and the sampling kernel function was defined. The minimum space-time domain of node structure map was located by sampling in the space-time domain. Finally, the deep neural network classifier was constructed to integrate and classify the human motion target gesture data features to realize the recognition of human motion target. The results show that the proposed algorithm has high classification accuracy and overlap ratio of human motion target gesture, the recognition accuracy is as high as 93%, the recall rate is as high as 88%, and the recognition time is 17.8 s, which can effectively improve the human motion target attitude recognition effect.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3