Coupled Thermo-Structural Analysis Model of Solid Rocket Motor Nozzle considering the Variation of Friction Coefficient under Operating Conditions

Author:

Sun Lin1ORCID,Jia Huiyin1ORCID,Zhang Nan2ORCID,Zhao Yu3ORCID,Bao Futing1ORCID

Affiliation:

1. Science and Technology on Combustion, Internal Flow and Thermal-Structure Laboratory, Northwestern Polytechnical University, Xi’an Shaanxi 710072, China

2. Xi’an Modern Control Technology Research Institute, Xi’an Shaanxi 710065, China

3. Shanghai Space Propulsion Technology Research Institute, Shanghai 201109, China

Abstract

Multi-interface is a typical feature of solid rocket motor nozzles, and the interface evolution law is an important aspect to analyze the thermo-structural response of solid rocket motor nozzles. In this paper, based on the friction coefficient test at different temperatures, a coupled thermo-structural analysis model of solid rocket motor nozzle considering the variation of friction coefficient under operating conditions was established. Firstly, the friction coefficient was tested to model the variation at different temperatures. Then, by adopting structure gap, variable friction coefficient, thermal contact resistance, and friction heat production, a strongly coupled non-linear model was established. Simulations using the non-linear model and traditional model were performed, in which the stress of the throat insert was within the required stress range of the material. The ground firing test result demonstrated the validity of the analysis model, and the non-linear model was in a better agreement with the firing test than the traditional model. Therefore, it can be concluded that with a more specific friction coefficient to represent the friction behaviour of the different parts of the nozzle, the strongly coupled non-linear model established in this paper can reflect the essence of thermo-structural response of solid rocket motor nozzle.

Funder

Shanghai Academy of Spaceflight Technology Innovation Fund

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3