Affiliation:
1. Wuxi Vocational College of Science and Technology, Wuxi 214122, China
Abstract
This study proposes a fractional gradient descent (FGD) algorithm for FIR models with missing data. By using the auxiliary model method, the missing data can be obtained. Then, the FGD algorithm is applied to update the parameters of the FIR models. Because of the fractional term in the conventional GD algorithm, the convergence rates of the GD algorithm can be increased. In addition, to avoid the step-size calculation, an Aitken FGD-based auxiliary model algorithm is also introduced. The convergence analysis and simulation examples are provided to show the effectiveness of the proposed algorithms.
Funder
Natural Science Foundation for Colleges and Universities in Jiangsu Province
Subject
Multidisciplinary,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献