Brain Decoding Using fMRI Images for Multiple Subjects through Deep Learning

Author:

Qureshi Muhammad Bilal1ORCID,Azad Laraib2,Qureshi Muhammad Shuaib3ORCID,Aslam Sheraz4ORCID,Aljarbouh Ayman3ORCID,Fayaz Muhammad3ORCID

Affiliation:

1. Department of Computer Science & IT, University of Lakki Marwat, Lakki Marwat 28420, KPK, Pakistan

2. Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan

3. Department of Computer Science, School of Arts and Sciences, University of Central Asia, Kyrgyzstan

4. Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Cyprus

Abstract

Substantial information related to human cerebral conditions can be decoded through various noninvasive evaluating techniques like fMRI. Exploration of the neuronal activity of the human brain can divulge the thoughts of a person like what the subject is perceiving, thinking, or visualizing. Furthermore, deep learning techniques can be used to decode the multifaceted patterns of the brain in response to external stimuli. Existing techniques are capable of exploring and classifying the thoughts of the human subject acquired by the fMRI imaging data. fMRI images are the volumetric imaging scans which are highly dimensional as well as require a lot of time for training when fed as an input in the deep learning network. However, the hassle for more efficient learning of highly dimensional high-level features in less training time and accurate interpretation of the brain voxels with less misclassification error is needed. In this research, we propose an improved CNN technique where features will be functionally aligned. The optimal features will be selected after dimensionality reduction. The highly dimensional feature vector will be transformed into low dimensional space for dimensionality reduction through autoadjusted weights and combination of best activation functions. Furthermore, we solve the problem of increased training time by using Swish activation function, making it denser and increasing efficiency of the model in less training time. Finally, the experimental results are evaluated and compared with other classifiers which demonstrated the supremacy of the proposed model in terms of accuracy.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Brain Decoding Using fMRI Images for Multiple Subjects through Deep Learning;Computational and Mathematical Methods in Medicine;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3