Indoor PDR Positioning Assisted by Acoustic Source Localization, and Pedestrian Movement Behavior Recognition, Using a Dual-Microphone Smartphone

Author:

Wang Mei12,Duan Nan1,Zhou Zou13ORCID,Zheng Fei13ORCID,Qiu Hongbing13ORCID,Li Xiaopeng1,Zhang Guoli1

Affiliation:

1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

2. College of Information Science and Engineering, Guilin University of Technology, Guilin 541004, China

3. Ministry of Education Key Laboratory of Cognitive Radio and Information Processing, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

In recent years, the public’s demand for location services has increased significantly. As outdoor positioning has matured, indoor positioning has become a focus area for researchers. Various indoor positioning methods have emerged. Pedestrian dead reckoning (PDR) has become a research hotspot since it does not require a positioning infrastructure. An integral equation is used in PDR positioning; thus, errors accumulate during long-term operation. To eliminate the accumulated errors in PDR localisation, this paper proposes a PDR localisation system applied to complex scenarios with multiple buildings and large areas. The system is based on the pedestrian movement behavior recognition algorithm proposed in this paper, which recognises the behavior of pedestrians for each gait and improves the stride length estimation for PDR localisation based on the recognition results to reduce the accumulation of errors in the PDR localisation algorithm itself. At the same time, the system uses self-researched hardware to modify the audio equipment used for broadcasting within the indoor environment, to locate the acoustic source through a Hamming distance-based localisation algorithm, and to correct the estimated acoustic source estimated location based on the known source location in order to eliminate the accumulated error in PDR localisation. Through analysis and experimental verification, the recognition accuracy of pedestrian movement behavior recognition proposed in this paper reaches 95% and the acoustic source localisation accuracy of 0.32 m during movement, thus, producing an excellent effect on eliminating the cumulative error of PDR localisation.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3