Prognostic Nomogram and a Risk Classification System for Predicting Overall Survival of Elderly Patients with Fibrosarcoma: A Population-Based Study

Author:

Yang Fengkai1ORCID,Xie Hangkai2ORCID,Wang Yucheng3ORCID

Affiliation:

1. Department of Postgraduate Medical School, Chengde Medical College, Chengde, Hebei Province, China

2. The Third School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, Zhejiang Province, China

3. Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang Province, China

Abstract

Background. The objective of this study was to develop a nomogram model and risk classification system to predict overall survival in elderly patients with fibrosarcoma. Methods. The study retrospectively collected data from the Surveillance, Epidemiology, and End Results (SEER) database relating to elderly patients diagnosed with fibrosarcoma between 1975 and 2015. Independent prognostic factors were identified using univariate and multivariate Cox regression analyses on the training set to construct a nomogram model for predicting the overall survival of patients at 3, 5, and 10 years. The receiver operating characteristic (ROC) curves and calibration curves were used to evaluate the discrimination and predictive accuracy of the model. Decision curve analysis was used for assessing the clinical utility of the model. Result. A total of 357 elderly fibrosarcoma patients from the SEER database were included in our analysis, randomly classified into a training set (252) and a validation set (105). The multivariate Cox regression analysis of the training set demonstrated that age, surgery, grade, chemotherapy, and tumor stage were independent prognostic factors. The ROC showed good model discrimination, with AUC values of 0.837, 0.808, and 0.806 for 3, 5, and 10 years in the training set and 0.769, 0.779, and 0.770 for 3, 5, and 10 years in the validation set, respectively. The calibration curves and decision curve analysis showed that the model has high predictive accuracy and a high clinical application. In addition, a risk classification system was constructed to differentiate patients into three different mortality risk groups accurately. Conclusion. The nomogram model and risk classification system constructed by us help optimize patients’ treatment decisions to improve prognosis.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3