Discrete Cosine Transform Matrix Based SLM Algorithm for OFDM with Diminished PAPR for M-PSK over Different Subcarriers

Author:

Gupta Prabal1ORCID,Singh Rajiv Kumar2ORCID,Thethi H. Pal3ORCID,Singh Balpreet3ORCID,Nanda Santosh Kumar4ORCID

Affiliation:

1. Department of ECE, SCSE, Lovely Professional University, Punjab, India

2. Department of Electronics Engineering, Institute of Engineering & Technology, Dr. APJ Abdul Kalam Technical University, Lucknow, India

3. Department of ECE, SEEE, Lovely Professional University, Punjab, India

4. Flytxt Mobile Solutions Pvt. Ltd., 7th Floor, Leela Infopark, Technopark Rd., Technopark Campus, Thiruvananthapuram 695581, Kerala, India

Abstract

Orthogonal frequency division multiplexing (OFDM) is the highly spectrally well-organized method that has the difficulty of excessive peak power to average power ratio (PAPR), which ultimately imposes constraints on the high-power amplifier. Many practices have been projected to lessen PAPR of the OFDM systems. Amongst all the practices, the selected mapping (SLM) method has drawn more attention because of distortion-less behaviour. This technique uses unique phase sequences. It has been learnt that phase formation for SLM is very tedious. In the proposed work, the SLM method has been used, but phase arrangement formation is based on the usage of discrete cosine transform (DCT) matrix. In this proposed work, discrete cosine transform matrix has been chosen based on the requirement of optimization so that the arrangement with lowest PAPR can be nominated for the transmission. MATLAB simulation depicts that the remarkable gain is achieved as compared with the existing technique. In the proposed work, scheming of phase sequences are very informal due to the use of a DCT matrix which has a definite structure and can be generated at the receiver side with the help of side information of the phases and communicated from the transmitter to the receiver.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3