Affiliation:
1. Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
2. Department of FPRS, Eye & ENT Hospital of Fudan University, Shanghai, China
3. ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
Abstract
Bone conduction (BC) hearing devices have been used to improve hearing in patients with unilateral conductive hearing loss; however, the clinical results of improvement in the sound localization ability are still controversial. Transcranial transmission in BC may be an important factor affecting sound localization abilities. Transcranial or interaural attenuation, derived from energy attenuation during the BC process, is determined by the different transfer functions of multiple pathways and affected by the whole-head vibration modes. The purpose of this study is to analyze the frequency dependence of BC vibration modes of the whole head, the contribution of middle and inner ear pathways to BC hearing, and the relationship between transcranial attenuation results by dynamics measurement and hearing thresholds. Experimental studies of vibration modes and transcranial attenuation characteristics in BC are performed using scanning laser Doppler vibrometry (LDV) measurements on human cadaver heads. Differences in vibration modes between the excitation and contralateral sides are observed. Additionally, a multiscale human whole-head FE model, including the skull, bony outer ear, ossicular chains, and bony inner ear structures, is proposed to study the mechanism of BC in the human hearing system. After verifying the rationality of the FE model using mechanical impedance and frequency response data, the transcranial attenuation on the temporal bone surfaces and the middle ear structure is calculated in the FE model. Moreover, the vibration characteristics of bilateral ossicular chains and the cochlear bony wall are observed in the whole-head FM model to study their contributions to BC hearing. By analyzing the experimental and numerical results of the vibration modes and the frequency response of the whole head incorporating the ossicular chain and cochlear bony wall, the intrinsic relationship between the results of transcranial attenuation by 1D LDV, 3D LDV, and hearing threshold measurements is further investigated.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献