A Manipulator Pose Planning Algorithm Based on Matrix Information Geometry

Author:

Duan Xiaomin1ORCID,Mu Anqi1ORCID,Guo Hao1ORCID,Zhao Xinyu23ORCID

Affiliation:

1. School of Science, Dalian Jiaotong University, Dalian, China

2. School of Material Science and Engineering, Dalian Jiaotong University, Dalian, China

3. Dalian Ruidi Sound Light Technology Co. Ltd., Dalian, China

Abstract

In an automatic ultrasonic testing system constituted by an ultrasonic probe and a six-axis manipulator, the manipulator needs to run from a static state to the target velocity. To prevent equipment damage caused by sudden acceleration or deceleration, it is necessary to plan the position and pose of the end effector of the manipulator at each detected point. In this manuscript, an algorithm for planning the position and pose of the manipulator is proposed based on the information geometry structure of special orthogonal groups. As the linear operation of the orthogonal matrix corresponding to the manipulator pose is not closed, the manipulator pose at each detected point was calculated using the straightness of the Lie algebra of the special orthogonal group. The matrix information geometry algorithm enabled not only the manipulator to accelerate and decelerate uniformly along the detection trajectory, but also the angular acceleration of the end effector to accelerate uniformly at first, then keep a uniform velocity, and finally decelerate uniformly. The platform motion experiments with the Turin TKB070S six-axis manipulator are carried out to verify the effectiveness of the matrix information geometry algorithm for planning the pose of the manipulator.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3