Swimming Attitude for Tracking Error Correction Based on Mahony Algorithm

Author:

Chang Zheng1,Zhao Yu2ORCID

Affiliation:

1. Physical Education Teaching and Research Department, Northeast Agricultural University, Harbin 150030, China

2. School of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China

Abstract

Swimming is predominantly a long-distance endurance sport. In this sport, like in many others, monitoring and tracking swimming attitude error correction and how it changes over time is critical. Besides, in swimming posture measurement, due to the absorption and refraction of various signals of water, sensors relying on external information cannot provide accurate information. In addition, the inertial technology is not dependent on external information, suitable for the field of swimming posture measurement. Inertial attitude measurement requires initial alignment technology to provide initial values to calculate the attitude in the swimming movement. However, the swimmer’s jump time is uncertain and the traditional initial alignment algorithm needs a long time to get a high-precision result. To solve this problem, in this paper, we proposed a fast alignment method by the Mahony algorithm. In our work, we have used nine-axis inertial measurement unit of micro-electro-mechanical systems (MEMS) to collect information. Furthermore, we calculated the attitude angle by angular velocity information, horizontal attitude angle, and yaw angle, and these were corrected by acceleration information and magnetic field intensity information, respectively, and multisource information was integrated by a complementary filtering method. It is simple to acquire the starting value of inertial attitude measurement. Laboratory experiments verify that the horizontal accuracy of attitude angle can reach the angle classification within 3 s, which meets the requirements of swimming sports. The algorithm’s viability is further confirmed through experiments in real-world sporting scenarios.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3