Enhancing Structural Crack Detection through a Multiscale Multilevel Mask Deep Convolutional Neural Network and Line Similarity Index

Author:

Ham Ji-Wan1ORCID,Jeong Siheon2ORCID,Kim Min-Gwan2ORCID,Park Joon-Young3ORCID,Oh Ki-Yong2ORCID

Affiliation:

1. Department of Intelligent Energy and Industry, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

2. Department of Mechanical Convergence Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

3. KEPCO Research Institute, Korea Electric Power Corporation, 105, Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea

Abstract

This paper proposes a novel and practical crack-detection method for infrastructure. The proposed method exhibits three key components. First, a multiscale multilevel mask deep convolutional neural network (MSML Mask DCNN) is proposed to accurately estimate crack candidates comprising linear and curvilinear features. Second, the proposed neural network is trained using only public image-sets. The main principle of this approach is that cracks have unique and distinct features, and therefore, public image-sets provide sufficient information to estimate crack candidates for a neural network. Third, a line similarity index (LSI), which is calculated using the Hough transform and coordinate transformation with principal component analysis, is incorporated to eliminate non-crack candidates from crack candidates based on two key characteristics: the variation in crack features with respect to the representative line and the number of crack features that crossed the representative line. Addressing these two crack-related characteristics improves accuracy and robustness by effectively eliminating non-crack features. Field tests performed inside a building and in an underground power tunnel demonstrated the effectiveness of the proposed method. The MSML Mask DCNN outperformed other neural networks, accurately recognizing local crack candidates characterized by linear and curvilinear features even though only public image-sets were used for training. The proposed LSI also effectively eliminated non-crack candidates estimated by the MSML Mask DCNN. The proposed method is practical for real-world applications, where several non-crack objects and noises are typically present.

Funder

KEPCO Research Institute

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3