Gamma Rays Induced Modification in Ultrahigh Molecular Weight Polyethylene (UHMWPE)

Author:

Aarya Suveda1,Kumar Pawan2,Bhatia Mamta2,Kumar Sanjeev3,Sharma Jyotsna4,Siddhartha 2ORCID

Affiliation:

1. Department of Physical Sciences and Languages, College of Basic Sciences, Palampur, India

2. Department of Physics, Acharya Narendra Dev College, University of Delhi, New Delhi 110019, India

3. Department of Physics, Motilal Nehru College, University of Delhi, 110 021, India

4. Amity School of Applied Sciences, Amity University Haryana, India

Abstract

Modifications taking place in ultrahigh molecular weight polyethylene (UHMWPE) films due to gamma ray radiation-induced and investigated in correlation with the applied doses. Films were irradiated in a vacuum at room temperature by a 1.25 MeV Co60 a source with doses ranging from 0 to 300 kGg. The optical, chemical, structural, and surface morphological properties of the irradiated and unirradiated UHMWPE films were investigated by UV-Visible, FTIR, XRD, and SEM, respectively. The band gap E g decreases with increasing radiation dose and coloration effects have been seen at higher doses. FTIR spectra show an oscillatory behavior in the transmittance intensities without affecting in their peak positions. Number of small absorption peaks can be seen clearly which may be due to the cross-linking of the polymeric chain. No significant change in crystalline peak has been found in the X-ray diffraction pattern indicating the structural stability of the polymer. The morphology of the smooth topography of the polymer samples to change rougher one polymeric sample shows the formation of microvoids on the surface of the polymeric materials with the increase of the doses from 0 to 300 kGy.

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3