An UAV-Assisted Edge Computing Resource Allocation Strategy for 5G Communication in IoT Environment

Author:

Liu Hao1ORCID

Affiliation:

1. Zhengzhou Health Vocational College, Xingyang, Henan 450100, China

Abstract

As the computing capacity of existing mobile devices cannot fully meet the needs of users for communication quality, a computing resource allocation strategy for 5G communication in the Internet of Things (IoT) environment is proposed by applying UAV-assisted edge computing. First, a system model is constructed with the UAV deployed with mobile edge computing (MEC) servers to provide assisted computing services for multiple users on the ground. Based on the optimization of the UAV trajectory, communication scheduling, and the energy consumption model of the UAV, the problem of the total computational cost minimization is formulated. Then, the genetic algorithm is improved by introducing a penalty function to solve this problem, in which selection, crossover, and mutation operations are iterated to obtain the optimal allocation strategy for computational resources. Finally, a simulation platform is constructed to analyze the proposed method. The results show that the total cost and total time of the proposed strategy are better than other comparison strategies.

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3