Affiliation:
1. Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract
Deep learning is the crucial technology in intelligent question answering research tasks. Nowadays, extensive studies on question answering have been conducted by adopting the methods of deep learning. The challenge is that it not only requires an effective semantic understanding model to generate a textual representation but also needs the consideration of semantic interaction between questions and answers simultaneously. In this paper, we propose a stacked Bidirectional Long Short-Term Memory (BiLSTM) neural network based on the coattention mechanism to extract the interaction between questions and answers, combining cosine similarity and Euclidean distance to score the question and answer sentences. Experiments are tested and evaluated on publicly available Text REtrieval Conference (TREC) 8-13 dataset and Wiki-QA dataset. Experimental results confirm that the proposed model is efficient and particularly it achieves a higher mean average precision (MAR) of 0.7613 and mean reciprocal rank (MRR) of 0.8401 on the TREC dataset.
Funder
National Key R&D Program of China
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献