Network Pharmacology Analysis of the Therapeutic Potential of Colchicine in Acute Lung Injury

Author:

Sun Fei1,Zhang Lijuan2,Shen Lulu3ORCID,Wang Chunman4ORCID

Affiliation:

1. Department of Anaesthesiology, Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing 210008, Jiangsu, China

2. Surgical Intensive Care Unit, Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing 210008, Jiangsu, China

3. Department of Anesthesiology, Huai’an Second People’s Hospital and the Affiliated Huai’an Hospital of Xuzhou Medical University, No. 66 Huaihai South Road, Huai’an, Jiangsu, China

4. Pain Department, Hengshui People’s Hospital, 180 People’s East Road, Hengshui, Hebei, China

Abstract

Background. This study employed integrated network pharmacology approach to explore the mechanisms underlying the protective effect of colchicine against acute lung injury (ALI). Methods. We analyzed the expression profiles from 13 patients with sepsis-related ALI and 21 controls to identify differentially expressed genes and key modules. ALI-related genes were curated using databases such as DisGeNET, Therapeutic Target, and Comparative Toxicogenomics Database to curate ALI-related genes. Drug target fishing for colchicine was conducted using the DrugBank, BATMAN-TCM, STITCH, and SwissTargetPrediction. Potential drug-disease interactions were determined by intersecting ALI-associated genes with colchicine target genes. We performed comprehensive pathway and process enrichment analyses on these genes. A protein-protein interaction network was constructed, and topological analysis was executed. Additionally, an ALI mouse model was established to evaluate the effect of colchicine on CXCL12 and CXCR4 levels through western blot analysis. Results. Analysis revealed 23 potential colchicine-ALI interaction genes from the intersection of 253 ALI-associated genes and 389 colchicine targets. Functional enrichment analysis highlighted several inflammation-related pathways, such as cytokine-mediated signaling pathway, CXCR chemokine receptor binding, NF-kappa B signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. The protein-protein interaction network demonstrated complex interactions for CXCL12 and CXCR4 among other candidate genes, with significant topological interaction degrees. In vivo studies showed that colchicine significantly reduced elevated CXCL12 and CXCR4 levels in ALI mice. Conclusion. Our findings suggest that colchicine’s therapeutic effect on ALI might derive from its anti-inflammatory properties. Further research is needed to explore the specific mechanisms of colchicine’s interaction with sepsis-induced ALI.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3