Bank Financial Risk Prediction Model Based on Big Data

Author:

Peng Hua12ORCID,Lin Yicheng2ORCID,Wu Mingzheng2

Affiliation:

1. Wuyi University, Wuyishan 354300, China

2. National Changhua University of Education, Changhua 50007, China

Abstract

Financial risk prediction is an important technique to systematically predict the unforeseeable risks in banking systems. The issues involving ill-timing and low accuracy in the current risks prediction methods necessitate an effective risk prediction method. Akin to the use of big data in various domains, the technology has a significant role in financial services and can be used to accurately and timely predict the possibilities of risks. In this paper, an effective hybrid method is proposed to aptly and effectively predict financial risks in the banking systems. The method utilizes the Lasso and linear regression algorithms via the big data features and framework technologies. By proper formalization of the bank financial risk problems, the risk data is obtained and processed. To filter the initial text features and preprocess the annual report text data, the information gain method is used. With the Bag-of-Words (BoW) and the word frequency reverse document frequency weighting method, the text features of financial risk prediction are extracted. The bank financial risk prediction model is constructed based on weighted fusion adaptive random subspace algorithm. The prediction results obtained are integrated so as to realize the bank financial risks in a seamless way. The experimental results show that the proposed method can effectively improve the prediction accuracy and consumes comparatively lesser time in risk prediction.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3