CAFC-Net: A Critical and Align Feature Constructing Network for Oriented Ship Detection in Aerial Images

Author:

Zhang Dongdong1ORCID,Wang Chunping1ORCID,Fu Qiang1ORCID

Affiliation:

1. Department of Electronic and Optical Engineering, People Liberation Army Engineering University-Shijiazhuang, Shijiazhuang, Hebei 050003, China

Abstract

Ship detection is one of the fundamental tasks in computer vision. In recent years, the methods based on convolutional neural networks have made great progress. However, improvement of ship detection in aerial images is limited by large-scale variation, aspect ratio, and dense distribution. In this paper, a Critical and Align Feature Constructing Network (CAFC-Net) which is an end-to-end single-stage rotation detector is proposed to improve ship detection accuracy. The framework is formed by three modules: a Biased Attention Module (BAM), a Feature Alignment Module (FAM), and a Distinctive Detection Module (DDM). Specifically, the BAM extracts biased critical features for classification and regression. With the extracted biased regression features, the FAM generates high-quality anchor boxes. Through a novel Alignment Convolution, convolutional features can be aligned according to anchor boxes. The DDM produces orientation-sensitive feature and reconstructs orientation-invariant features to alleviate inconsistency between classification and localization accuracy. Extensive experiments on two remote sensing datasets HRS2016 and self-built ship datasets show the state-of-the-art performance of our detector.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3