Affiliation:
1. Information Technology Department, College of Computer & Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
Abstract
With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporateslearning content, learning objectives, lexical knowledge,andscenariosinto a single cohesive framework.
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献