PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-Responsive Transport

Author:

Lee Eunkyeong1ORCID,Choi Hosik1ORCID,Kim Do-Gyeong2ORCID

Affiliation:

1. Department of Urban Big Data Convergence, University of Seoul, Seoul 02504, Republic of Korea

2. Department of Transportation Engineering & Graduate School, Department of Urban Big Data Convergence, University of Seoul, Seoul 02504, Republic of Korea

Abstract

To provide an efficient demand-responsive transport (DRT) service, we established a model for predicting regional movement demand that reflects spatiotemporal characteristics. DRT facilitates the movement of restricted passengers. However, passengers with restrictions are highly dependent on transportation services, and there are large fluctuations in travel demand based on the region, time, and intermittent demand constraints. Without regional demand predictions, the gaps between the desired boarding times of passengers and the actual boarding times are significantly increased, resulting in inefficient transportation services with minimal movement and maximum costs. Therefore, it is necessary to establish a regional demand generation prediction model that reflects temporal features for efficient demand response service operations. In this study, a graph convolutional network model that performs demand prediction using spatial and temporal information was developed. The proposed model considers a region’s unique characteristics and the influence between regions through spatial information, such as the proximity between regions, convenience of transportation, and functional similarity. In addition, three types of temporal characteristics—adjacent visual characteristics, periodic characteristics, and representative characteristics—were defined to reflect past demand patterns. With the proposed demand forecasting model, measures can be taken, such as having empty vehicles move to areas where demand is expected or encouraging adjustment of the vehicle’s rest time to avoid congestion. Thus, fast and efficient transportation satisfying the movement demand of passengers with restrictions can be achieved, resulting in sustainable transportation.

Funder

University of Seoul

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3