Affiliation:
1. School of Transportation, Southeast University, Nanjing 211189, China
2. Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, USA
Abstract
Most of the current variable speed limit (VSL) strategies are designed to alleviate congestion in relatively short freeway segments with a single bottleneck. However, in reality, consecutive bottlenecks can occur simultaneously due to the merging flow from multiple ramps. In such situations, the existing strategies use multiple VSL controllers that operate independently, without considering the traffic flow interactions and speed limit differences. In this research, we introduced a multiagent reinforcement learning-based VSL (MARL-VSL) approach to enhance collaboration among VSL controllers. The MARL-VSL approach employed a centralized training with decentralized execution structure to achieve a joint optimal solution for a series of VSL controllers. The consecutive bottleneck scenarios were simulated in the modified cell transmission model to validate the effectiveness of the proposed strategy. An independent single-agent reinforcement learning-based VSL (ISARL-VSL) and a feedback-based VSL (feedback-VSL) were also applied for comparison. Time-varying heterogeneous traffic flow stemming from the mainline and ramps was loaded into the freeway network. The results demonstrated that the proposed MARL-VSL achieved superior performance compared to the baseline methods. The proposed approach reduced the total time spent by the vehicles by 18.01% and 17.07% in static and dynamic traffic scenarios, respectively. The control actions of the MARL-VSL were more appropriate in maintaining a smooth freeway traffic flow due to its superior collaboration performance. More specifically, the MARL-VSL significantly improved the average driving speed and speed homogeneity across the entire freeway.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献