Coordinated Variable Speed Limit Control for Consecutive Bottlenecks on Freeways Using Multiagent Reinforcement Learning

Author:

Zheng Si1ORCID,Li Meng1ORCID,Ke Zemian2ORCID,Li Zhibin1ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, USA

Abstract

Most of the current variable speed limit (VSL) strategies are designed to alleviate congestion in relatively short freeway segments with a single bottleneck. However, in reality, consecutive bottlenecks can occur simultaneously due to the merging flow from multiple ramps. In such situations, the existing strategies use multiple VSL controllers that operate independently, without considering the traffic flow interactions and speed limit differences. In this research, we introduced a multiagent reinforcement learning-based VSL (MARL-VSL) approach to enhance collaboration among VSL controllers. The MARL-VSL approach employed a centralized training with decentralized execution structure to achieve a joint optimal solution for a series of VSL controllers. The consecutive bottleneck scenarios were simulated in the modified cell transmission model to validate the effectiveness of the proposed strategy. An independent single-agent reinforcement learning-based VSL (ISARL-VSL) and a feedback-based VSL (feedback-VSL) were also applied for comparison. Time-varying heterogeneous traffic flow stemming from the mainline and ramps was loaded into the freeway network. The results demonstrated that the proposed MARL-VSL achieved superior performance compared to the baseline methods. The proposed approach reduced the total time spent by the vehicles by 18.01% and 17.07% in static and dynamic traffic scenarios, respectively. The control actions of the MARL-VSL were more appropriate in maintaining a smooth freeway traffic flow due to its superior collaboration performance. More specifically, the MARL-VSL significantly improved the average driving speed and speed homogeneity across the entire freeway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3