Electronic coherence transfer in photosynthetic complexes and its signatures in optical spectroscopy

Author:

Mančal Tomáš12,Valkunas Leonas34,Read Elizabeth L.56,Engel Gregory S.56,Calhoun Tessa R.56,Fleming Graham R.56

Affiliation:

1. Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

2. Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, CZ-121 16 Prague, Czech Republic

3. Institute of Physics, Vilnius, Lithuania

4. Department of Theoretical Physics, Faculty of Physics of Vilnius University, Vilnius, Lithuania

5. Department of Chemistry, University of California, Berkeley, CA, USA

6. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract

Effects of electronic coherence transfer after photoexcitation of excitonic complexes and their manifestation in optical spectroscopy are discussed. A general excitonic model Hamiltonian is considered in detail to elucidate the origin of energy relaxation in excitonic complexes. We suggest that the second-order quantum master equation for the reduced density matrix of electronic degrees of freedom provides the most suitable theoretical framework for the study of coherence transfer in photosynthetic bacteriochlorophyll complexes. Temperature dependence of the absorption band maximum of a simple excitonic dimer is interpreted in terms of coherence transfer between two excited states. The role of reorganization energy of the transitions in the magnitude of the effect is discussed. A large reorganization energy difference between the two states is found to induce significant band shift. The predictions of the theory are compared to experimental measurements of the bacterial reaction center absorption spectra ofRhodobacter sphaeroidesAs an example of a time-dependent spectroscopic method sensitive to coherences and possibly to their transfer, we present recent two-dimensional photon echo measurements of energy relaxation in the so-called Fenna–Matthews–Olson complex ofChlorobium tepidum, where distinct oscillatory patters predicted to be signatures of electronic coherence have been observed.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Spectroscopy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3