Plasticity and mTOR: Towards Restoration of Impaired Synaptic Plasticity in mTOR-Related Neurogenetic Disorders

Author:

Gipson Tanjala T.123,Johnston Michael V.12345

Affiliation:

1. Tuberous Sclerosis Center, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA

2. Department of Neurology and Developmental Medicine, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA

3. The Clinical Trials Unit, Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD 21205, USA

4. Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

5. Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

Abstract

Objective. To review the recent literature on the clinical features, genetic mutations, neurobiology associated with dysregulation of mTOR (mammalian target of rapamycin), and clinical trials for tuberous sclerosis complex (TSC), neurofibromatosis-1 (NF1) and fragile X syndrome (FXS), and phosphatase and tensin homolog hamartoma syndromes (PTHS), which are neurogenetic disorders associated with abnormalities in synaptic plasticity and mTOR signaling.Methods. Pubmed and Clinicaltrials.gov were searched using specific search strategies.Results/Conclusions. Although traditionally thought of as irreversible disorders, significant scientific progress has been made in both humans and preclinical models to understand how pathologic features of these neurogenetic disorders can be reduced or reversed. This paper revealed significant similarities among the conditions. Not only do they share features of impaired synaptic plasticity and dysregulation of mTOR, but they also share clinical features—autism, intellectual disability, cutaneous lesions, and tumors. Although scientific advances towards discovery of effective treatment in some disorders have outpaced others, progress in understanding the signaling pathways that connect the entire group indicates that the lesser known disorders will become treatable as well.

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3