SL-BiLSTM: A Signal-Based Bidirectional LSTM Network for Over-the-Horizon Target Localization

Author:

Yu Wanting1ORCID,Yu Hongyi2ORCID,Wang Ding1ORCID,Du Jianping2,Zhang Mengli3

Affiliation:

1. PLA Strategic Support Force Information Engineering University, Zhengzhou, China

2. National Digital Switching System Engineering and Technological Research Center, Zhengzhou, China

3. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China

Abstract

Deep learning technology provides novel solutions for localization in complex scenarios. Conventional methods generally suffer from performance loss in the long-distance over-the-horizon (OTH) scenario due to uncertain ionospheric conditions. To overcome the adverse effects of the unknown and complex ionosphere on positioning, we propose a deep learning positioning method based on multistation received signals and bidirectional long short-term memory (BiLSTM) network framework (SL-BiLSTM), which refines position information from signal data. Specifically, we first obtain the form of the network input by constructing the received signal model. Second, the proposed method is developed to predict target positions using an SL-BiLSTM network, consisting of three BiLSTM layers, a maxout layer, a fully connected layer, and a regression layer. Then, we discuss two regularization techniques of dropout and randomization which are mainly adopted to prevent network overfitting. Simulations of OTH localization are conducted to examine the performance. The parameters of the network have been trained properly according to the scenario. Finally, the experimental results show that the proposed method can significantly improve the accuracy of OTH positioning at low SNR. When the number of training locations increases to 200, the positioning result of SL-BiLSTM is closest to CRLB at high SNR.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3