Influence of Soybean Oil on Binder and Warm Mixture Asphalt Properties

Author:

Babagoli Rezvan1ORCID,Ameli Alireza2ORCID

Affiliation:

1. Faculty of Civil Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran

2. Department of Civil Engineering, Faculty of Engineering, Malard Branch, Islamic Azad University, Malard, Tehran, Iran

Abstract

To produce a usual hot mix asphalt, significant amount of energy is used, which causes air pollution. As a result, warm mix asphalt (WMA) is introduced to reduce the mixing and compaction temperature of the mixture. On the one hand, accumulation of waste oil in the ground occupies a large space in the Earth. After the process of frying the oil, if the by-product is not controlled properly, it leads to the pollution of the environment. Hence, utilization of this waste oil can be considered as a sustainable path to dealing with the risk. The main goal of the current research is to evaluate the possibility of exploiting soybean oil to reduce the mixing and compaction temperature of mixtures and produce warm mix asphalt (WMA). Moreover, the rheological and performance properties of mixtures containing soybean are evaluated in this study. The AC-60/70 and 85/100 binders are modified by soybean oil (0%, 1.5%, 2.5%, and 3.5% by weight of binder). Several binder tests are used to measure the physical and rheological behaviors of binders, such as penetration grade, softening point, temperature susceptibility, rotational viscosity (RV), Multiple Stress Creep Recovery (MSCR), and Linear Amplitude Sweep (LAS) tests. Besides, several mixture tests are used to evaluate the performance of the mixture, including four-point bending beam fatigue (FPB), resilient modulus (Mr), indirect tensile strength (ITS), dynamic creep, and wheel track tests. Through MSCR test results, at two stress levels, the Jnr parameter increases as the soybean oil is added to the binder. The results of the LAS test revealed that the fatigue life of binders increases by addition of soybean oil. There is no significant difference between the results of new and waste oil. This in turn makes possible reducing soybean oil production and consumption, and instead frying oil (waste) is reused, which displays no significant difference in terms of chemical and physical properties. Also, the performance test of mixtures indicated that as the soybean oil is added to the mixture, the rutting performance decreases and fatigue performance increases. Based on the results, it is recommended to use 1.5% soybean oil in asphalt mixtures without compromising the performance of the mixture. ANOVA results showed that the warm additive had meaningful effects on MR, ITS, and FE; the same was true for the effects of the warm additive-binder type interaction.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3