Compressive Strength Evaluation of Fiber-Reinforced High-Strength Self-Compacting Concrete with Artificial Intelligence

Author:

Nguyen Tu T.1ORCID,Pham Duy Hoa2,Pham Thanh Tung3,Vu Hoang Hiep1

Affiliation:

1. Faculty of Civil Engineering, Hanoi Architectural University, Hanoi, Vietnam

2. Faculty of Bridge and Roads, National University of Civil Engineering, Hanoi, Vietnam

3. Faculty of Building and Industrial Construction, National University of Civil Engineering, Hanoi, Vietnam

Abstract

This paper describes the application of two artificial intelligence- (AI-) based methods to predict the 28-day compressive strength of fiber-reinforced high-strength self-compacting concrete (FRHSSCC) from its ingredients. A series of 131 data samples collected from various published literature sources were used for training, validation, and testing models. Various AI models were developed with different training algorithms and a number of nodes in the hidden layer to obtain the optimal model for the FRHSSCC data. It is shown that the performances of the artificial neural network (ANN) were better than that of the adaptive neurofuzzy inference system (ANFIS) model. Specifically, the overall coefficient of determination (R2) of the ANN and ANFIS models was 0.9742 and 0.9584, respectively. The sensitivity analysis was also conducted with the ANN model to investigate the effects of input parameters on the output. The results from the sensitivity analysis revealed that the compressive strength of FRHSSCC at 28 days was more sensitive with the changes of water by cement ratio (WCR) parameter and insensitive with varying amounts of fiber (VOF). Finally, it can be concluded that the application of artificial intelligence shows the great potential in the prediction of compressive strength of FRHSSCC.

Funder

National University of Civil Engineering

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3