Neural Network Model Design for Landscape Ecological Planning Assessment Based on Hierarchical Analysis

Author:

Liu Jing1ORCID,Zhou Xudan2

Affiliation:

1. School of Xiamen University of Technology, Xiamen, Fujian 361024, China

2. College of Forestry and Grassland of Jilin Agriculture University, Changchun, Jilin 130118, China

Abstract

In this paper, an in-depth study and analysis of landscape ecological planning and evaluation are carried out using the analytic hierarchy process (AHP) algorithm that integrates neural networks. The application of AHP in the field of tree species planning and the introduction of quantitative analysis methods can effectively change the subjectivity of previous qualitative analysis in tree species selection and make it objective, scientific, and reasonable. The research can provide a reference for other urban tree species planning. From the connotation of landscape ecological service process and ecological space structure, the analysis of landscape ecological service process involves service supply area and service association area, which correspond to different key components of ecological space structure. With the help of the platform, based on the identification and identification methods and theories of ecological spatial structure, the key components of ecological spatial structure in different environments are identified and extracted by using the representation model, binary suitability model, weighted suitability model, and process model. The type of service is based on the different service processes supported by the key components of the ecological spatial structure, forming the ecological spatial structure under different service types. Spatial structure; on this basis, the basic characteristics of the key components of the ecological spatial structure are analyzed, and the correlation characteristics of the ecological spatial structure are analyzed based on the correlation classification system of ecological spatial structure. A backpropagation (BP) neural network-based state assessment method of the grid structure is established. The method takes the parameters of the autoregressive model constructed by the acceleration signals of different working conditions as the feature quantity and the results of the fuzzy hierarchical analysis method as the labels, divides the data set into a training set and a test set, and uses the BP neural network learning method and the training set to supervised train the BP neural network learning assessment model. The test set is used to test the effectiveness and accuracy of the BP neural network-based learning method. The study shows that the evaluation system established by the BP neural network structure is fast and accurate and can substantially reduce the cost of manual testing.

Funder

Xiamen University of Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference21 articles.

1. Central urban open space system and green economy planning based on spatial clustering algorithms and AHP model

2. Defining urban green infrastructure role in analysis of climate resiliency in cities based on landscape ecology theories;E. Shirgir;TeMA Journal of Land Use, Mobility and Environment,2019

3. Simulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata

4. Can empirically based model results be fed into mathematical models? MCE for neural network and logistic regression in tourism landscape planning

5. Landslide risk assessment in Nanping City based on artificial neural networks model;S. Chen;Chinese Journal of Geological Hazard and Control,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3