Development of Data Integration and Sharing for Geotechnical Engineering Information Modeling Based on IFC

Author:

Wu Jiaming12ORCID,Chen Jian12345ORCID,Chen Guoliang1234,Wu Zhe6,Zhong Yu7,Chen Bin4,Ke Wenhui8,Huang Juehao1234

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

3. Hubei Key Laboratory of Geo-Environmental Engineering, Wuhan 430071, China

4. The Soft Soil Research Center in Ningbo University of Technology, State Key Laboratory of Geomechanics and Geotechnical Engineering, Ningbo 3 15211, China

5. China-Pakistan Joint Research Center on Earth Sciences, Islamabad, Pakistan

6. China State Construction International Holdings Limited, Hong Kong 999077, China

7. Wuhan Metro Group Co., Ltd., Wuhan 430071, China

8. Wuhan Municipal Construction Group Co., Ltd., Wuhan 430071, China

Abstract

With the rapid development of infrastructure construction, geotechnical engineering has always been worthy of attention due to its complexity and diversity. Accelerating the informatization of geotechnical engineering will contribute to the project management, but the information contained in geotechnical engineering cannot be well integrated because of the lack of unified data standards. Building Information Modeling (BIM) has been considered as an effective technology to manage information, and Industry Foundation Classes (IFC) in BIM serves as a neutral and open standard for the exchange of information. However, it was found that BIM cannot express the information of some structure objects and geological objects well during the construction process of geotechnical engineering. Combined with the characteristics of geotechnical engineering, taking advantage of the good extensibility of IFC, this paper proposes a “Built-In Generation Schema” for geotechnical structure models and a “Plug-In Extension Schema” for three-dimensional (3D) geological models, ultimately forming the basic data system of geotechnical engineering information models based on IFC. Applying extended IFC to the modeling process, the BIM-based modeling method of geotechnical models is proposed. In addition, an IFC-based platform is developed to integrate geological models and structure models for further displaying and analyzing of geotechnical engineering models. The work in this paper provides a feasible way and technical support for promoting the integration and sharing of geotechnical engineering information and enhancing the multiprofessional collaborative work.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3