Bearing Fault Diagnosis Using Synthetic Quantitative Index-Based Adaptive Underdamped Stochastic Resonance

Author:

Li Baochen1ORCID,Tong Rui2ORCID,Kang Jianshe2ORCID,Chi Kuo3ORCID

Affiliation:

1. Office of Research and Development, Army Engineering University, Nanjing 210000, China

2. Shijiazhuang Branch, Army Engineering University, Shijiazhuang 050000, China

3. China Satellite Maritime Tracking and Control Department, Wuxi 214431, China

Abstract

Stochastic resonance is like a nonlinear filter to detect the weak bearing fault-induced impulses that submerged in strong noises. Signal-to-noise ratio (SNR) is often used as the index to evaluate the SR output, but the fault characteristic frequency (FCF) must be known in order to calculate SNR. A novel bearing fault diagnosis method called synthetic quantitative index-based adaptive underdamped stochastic resonance (SQI-AUSR) is proposed. The synthetic quantitative index (SQI) is composed of power spectrum kurtosis, kurtosis, margin index, and correlation coefficient. The SQI is independent of FCF, which avoids the limitation that the calculation of SNR must know the FCF. Numeric simulations and two case studies of bearing faults are carried out. The results show that (1) the SQI is more effective than other proposed indexes such as correlation coefficient and weight power spectrum kurtosis and (2) the proposed SQI-AUSR is effective for bearing fault diagnosis and is better than SNR-AOSR.

Funder

Reliability centered maintenance laboratory of Shijiazhuang branch of Army Engineering University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3