Jet‐to‐Porous Heat Sinks with a Variable Porous Height Layer

Author:

Mashhadi Keshtiban Mohsen,Zabetian Targhi MohammadORCID,Heyhat Mohammad Mahdi

Abstract

The enhanced surface area and flow mixing offered by porous media are attractive features to augment the thermal performance of jet impingement heat sinks. However, the current jet‐to‐porous heat sinks demonstrate high pressure drop penalties and poor thermal performance due to the exacerbated jet momentum losses of the porous layer. In this study, jet impingement heat sinks with variable porous height layers are introduced to overcome the above drawbacks. The purpose of this study is using the porous domain in the selectively high‐temperature areas of an annular heat sink and avoiding direct jet‐to‐porous interaction at the jet center. Consequently, the negative impacts of momentum loss are reduced and thus enhanced the thermohydraulic performance of jet‐to‐porous heat sinks. The realizable k‐ε turbulent model for the fluid domain and the Darcy–Brinkman–Forchheimer equations for the porous domain are solved employing ANSYS Fluent for investigating the thermohydraulic characteristics of the system. It was shown that a jet impingement heat sink with a variable porous height layer, increasing in the radial direction, proves a significantly lower pressure drop penalty and thermal resistance than a constant porous height layer or a plain surface, while constant porous height shows lower thermohydraulic performance than the plain one at higher Re numbers. For instance, at a Re = 5,000 and HR = 0.5, the thermal resistance of a variable porous height layer is 9.63 × 10−5 (m2·K/W), which is 25% and 37% lower than that of the constant porous height surface and plain surface, respectively. The findings of the present study suggest that a variable porous height layer offers new ways to enhance the thermal management of future electronic systems.

Funder

Iran National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3